

US009202338B2

(12) United States Patent Lafky et al.

(54) GAMING METHOD AND DEVICE INVOLVING PROGRESSIVE WAGERS

(71) Applicant: IGT, Las Vegas, NV (US)

(72) Inventors: Ernie M. Lafky, San Francisco, CA

(US); Mark C. Nicely, Daly City, CA

(US)

(73) Assignee: IGT, Las Vegas, NV (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1 day.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 14/450,898

(22) Filed: Aug. 4, 2014

(65) **Prior Publication Data**

US 2014/0342805 A1 Nov. 20, 2014

Related U.S. Application Data

(60) Continuation of application No. 13/793,746, filed on Mar. 11, 2013, now Pat. No. 8,801,520, which is a continuation of application No. 12/684,355, filed on Jan. 8, 2010, now Pat. No. 8,408,993, which is a

(Continued)

(51) Int. Cl.

 A63F 9/24
 (2006.01)

 G07F 17/32
 (2006.01)

 G07F 17/34
 (2006.01)

(52) U.S. Cl.

 (10) Patent No.:

US 9,202,338 B2

(45) **Date of Patent:**

*Dec. 1, 2015

58) Field of Classification Search

CPC .. G07F 17/32; G07F 17/3258; G07F 17/3244 USPC 463/16, 20, 21, 25, 42; 273/138.1, 273/138.2, 143 R

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

1,978,395 A 10/1934 Groetchen 2,545,644 A 3/1951 Benton et al.

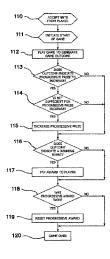
(Continued)

FOREIGN PATENT DOCUMENTS

AU 524709 9/1982 AU 555905 10/1986 (Continued)

OTHER PUBLICATIONS

4DU Dice Unit Advertisement written by starpoint.uk.com, printed on Sep. 3, 2002.


(Continued)

Primary Examiner — Jay Liddle
Assistant Examiner — Ryan Hsu
(74) Attorney, Agent, or Firm — Neal, Gerber & Eisenberg
LLP

(57) ABSTRACT

A method of gaming is disclosed wherein progressive award values may be increased in response to certain pre-established game outcomes, wager amounts or random events. The increased progressive award values may be based on a primary game or secondary game outcome. Another innovation is the resetting of progressive awards upon completion of a bonus event whether or not award actually won in said bonus event. Player tracking systems permit progressive award values to be linked to a particular player such that the progressive award values remain personal to the player. Re-setting increased progressive award values is also disclosed.

22 Claims, 14 Drawing Sheets

	Rela	ted U.S. A	pplication Data	5,209,4	79 A		
	division of application No. 11/196,645, filed on Au			5,217,2 5,249,8			Sincock Hilgendorf et al.
	2, 2005, nov			5,252,6	20 A	10/1993	Elliott, Jr. et al.
(60)	Provisional	application	No. 60/598,305, filed on Aug.	5,259,6 5,265,8			Bergmann Dickinson et al.
()	3, 2004.	11		5,275,4	00 A	1/1994	Weingardt
(50)		Deferen	and Cita I	5,276,3 5,277,4			McCarthy Wilms
(56)		Referen	ces Cited	5,280,9	09 A	1/1994	Tracy
	U.S	. PATENT	DOCUMENTS	5,282,6, 5,286,0			
	2,743,108 A	4/1956	Sanders	5,292,1	27 A	3/1994	Kelly et al.
	2,942,574 A	6/1960	Golay	5,308,0 5,321,2			Bridgeman et al. Craine
	3,420,525 A 3,618,019 A	1/1969 11/1971	Nemirovsky et al.	5,324,0 5,326,1			Morris et al. Pease et al.
	3,642,287 A	2/1972	Lally et al.	5,332,2	28 A	7/1994	Schultz
	3,735,987 A 3,904,207 A	5/1973 9/1975	Gold	5,342,0- 5,342,0-		8/1994 8/1994	Heidel et al. Wichinsky et al.
	3,971,557 A 3,975,022 A		Breslow et al. Figueroa	5,344,1	14 A	9/1994	Canon
	3,998,309 A		Mandas et al.	5,351,9° 5,364,1°			Fioretti Ludlow et al.
	4,072,930 A 4,182,515 A		Lucero et al. Nemeth	5,377,9	93 A	1/1995	Josephs
	4,182,313 A 4,198,052 A		Gauselmann	5,380,0 5,393,0			Travis et al. Marnell, II
	4,238,127 A 4,277,064 A		Lucero et al. Newman	5,393,0	51 A	2/1995	Manship et al.
	4,283,709 A		Lucero et al.	5,395,1 5,398,9			Inoue Eberhardt et al.
	4,335,809 A 4,363,485 A	6/1982 12/1982		5,401,0	24 A	3/1995	Simunek
	4,409,656 A		Andersen et al.	5,407,29 5,411,2			Zalabah Mirando
	4,410,178 A 4,448,419 A		Partridge Telnaes	5,417,4	30 A	5/1995	Breeding
	4,494,197 A	1/1985	Troy et al.	5,423,5 5,429,3			Nagao Raven et al.
	4,560,161 A 4,573,681 A	12/1985 3/1986		5,431,4	08 A	7/1995	Adams
	4,582,324 A	4/1986	Koza et al.	5,449,1° 5,456,4°			Thomas et al. Durham
	4,618,150 A 4,621,814 A	10/1986	Kimura Stepan et al.	5,470,0	79 A	11/1995	LeStrange et al.
	4,624,459 A	11/1986	Kaufman	5,472,15 5,476,2			Breeding et al. Weingardt
	4,636,951 A 4,652,998 A		Harlick Koza et al.	5,489,1	01 A	2/1996	Moody
	4,669,731 A	6/1987	Clarke	5,511,7 5,524,8			
	4,695,053 A 4,721,307 A	9/1987 1/1988	Vazquez, Jr. et al. Okada	5,531,4	41 A	7/1996	Dabrowski et al.
	4,732,386 A	3/1988	Rayfiel	5,536,0 5,542,6			Thompson Charron et al.
	4,743,024 A 4,756,531 A		Helm et al. DiRe et al.	5,544,8			Breeding
	4,760,527 A	7/1988	Sidley	5,544,85 5,547,15			Jones et al. Ishibashi
	4,775,155 A 4,805,907 A	10/1988 2/1989	Hagiwara	5,560,66 5,564,79			Seelig et al.
	4,836,546 A	6/1989	DiRe et al.	5,566,3			Szymanski
	4,837,728 A 4,838,552 A		Barrie et al. Hagiwara	5,570,8 5,577,9			Ornstein Takemoto
	4,842,278 A	6/1989	Markowicz	5,580,0	53 A	12/1996	Crouch
	4,844,464 A 4,856,787 A	7/1989 8/1989	Itkis	5,580,3 5,584,4			Piechowiak et al. Jone et al.
	4,861,041 A 4.871.171 A	8/1989 10/1989	Jones et al.	5,584,7	53 A	12/1996	Kelly et al.
	4,880,237 A		Kishishita	5,584,7 5,601,4			
	4,926,327 A 4,948,134 A	5/1990	Sidley Suttle et al.	5,605,5	06 A	2/1997	Hoorn et al.
	4,964,638 A	10/1990		5,609,5 5,611,5			Inoue Tiberio
	4,991,848 A 5,019,973 A		Greenwood et al. Wilcox et al.	5,611,7	30 A	3/1997	Weiss
	5,033,744 A		Bridgeman et al.	5,622,36 5,626,36			
	5,038,022 A 5,046,737 A	8/1991	Lucero Fienberg	5,630,7	53 A	5/1997	Fuchs
	5,048,833 A	9/1991	Lamle	5,639,0 5,641,0			Matsumoto et al. Smith et al.
	5,058,893 A 5,074,559 A	10/1991 12/1991	Bertram et al. Okada	5,641,7	30 A	6/1997	Brown
	5,092,598 A	3/1992	Kamille	5,645,4 5,647,5			
	5,116,055 A 5,123,649 A	5/1992 6/1992		5,647,75 5,647,75			Falciglia
	5,127,651 A	7/1992	Okada	5,655,9	51 A	8/1997	Acres et al.
	5,152,529 A 5,158,293 A	10/1992 10/1992		5,664,99 5,674,1			Seelig et al. Holch et al.
	5,178,390 A	1/1993	Okada	5,702,3	04 A	12/1997	Acres et al.
	5,205,555 A	4/1993	Hamano	5,707,2	85 A	1/1998	Place et al.

(56)			Referen	ces Cited	5,980,384		11/1999	
		II C I	DATENIT	DOCUMENTS	5,984,779 5,984,781		11/1999	Bridgeman et al.
		0.5.	EALDINI	DOCUMENTS	5,984,782		11/1999	
	5,707,286	Δ	1/1008	Carlson	5,989,121			Sakamoto
	5,711,525			Breeding	5,993,316	A	11/1999	Coyle et al.
	5,720,483		2/1998		5,997,400			Seelig et al.
	5,722,891	\mathbf{A}	3/1998	Inoue	5,997,401			Crawford
	5,732,948			Yoseloff	6,001,016 6,003,013			Walker et al. Boushy et al.
	5,741,183			Acres et al.	6,003,013			Wilson, Jr. et al.
	5,743,523 5,743,524			Kelly et al. Nannicola	6,007,066		12/1999	
	5,743,524		4/1998		6,007,427	A	12/1999	Wiener
	5,743,800			Huard et al.	6,012,982			Piechowiak et al.
	5,752,881		5/1998		6,015,346			Bennett
	5,752,882			Acres et al.	6,016,338 6,019,369			Bansal et al. Nakagawa et al.
	5,755,619			Matsumoto et al.	6,032,955			Luciano et al.
	5,761,647 5,762,552		6/1998	Boushy	6,033,307			Vancura
	5,766,076			Pease et al.	6,039,648			Guinn et al.
	5,769,716			Saffari et al.	6,039,649			Schulze
	5,772,506			Marks et al.	6,045,129			Cooper et al.
	5,772,509		6/1998		6,047,963 6,048,269			Pierce et al. Burns et al.
	5,772,511 RE35,864			Smeltzer Weingardt	6.050.895			Luciano et al.
	5,775,692			Watts et al.	6,056,642			Bennett
	5,779,544			Seelig et al.	6,059,289			Vancura
	5,779,545			Berg et al.	6,059,658			Mangano et al.
	5,779,547			SoRelle et al.	6,062,979		5/2000	Inoue Luciano
	5,779,549			Walker et al.	6,062,980 6,062,981			Luciano, Jr.
	5,788,573 5,800,269			Baerlocher et al. Holch et al.	6,068,553		5/2000	
	5,800,209		9/1998		6,077,162		6/2000	
	5,807,172			Piechowiak	6,080,062		6/2000	
	5,816,918		10/1998	Kelly et al.	6,086,066			Takeuchi et al.
	5,820,459			Acres et al.	6,089,976			Schneider et al. Bennett
	5,823,872			Prather et al.	6,089,977 6,089,978		7/2000	
	5,823,873 5,823,874		10/1998 10/1998		6,089,980			Gauselmann
	D400,597			Hedrick et al.	6,093,102			Bennett
	5,833,536			Davids et al.	6,099,408			Schneier et al.
	5,833,537		11/1998		6,102,400			Scott et al.
	5,833,538		11/1998		6,102,474 6,102,798		8/2000	Datey Bennett
	5,833,540 5,836,817			Miodunski et al. Acres et al.	6,102,799			Stupak
	D402,702			Seelig et al.	6,105,962			Malavazos et al.
	5,848,932		12/1998		6,110,039		8/2000	
	5,851,011		12/1998		6,110,041			Walker et al.
	5,851,147		12/1998		6,110,043 6,113,098		8/2000 9/2000	
	5,851,149			Xidos et al. Kamille	6,117,009			Yoseloff
	5,855,514 5,855,515			Pease et al.	6,117,013		9/2000	
	5,863,249		1/1999		6,120,031		9/2000	
	5,873,781	A	2/1999	Keane	6,120,377		9/2000	McGinnis, Sr. et al.
	D406,865	S	3/1999		6,120,378 6,126,541		10/2000	Moody et al.
	5,876,284			Acres et al.	6,126,542		10/2000	
	5,882,261 5,885,157		3/1999 3/1999	Harada et al.	6,129,355			Hahn et al.
	5,885,158			Torango et al.	6,135,884			Hedrick et al.
	5,890,962			Takemoto	6,135,885			Lermusiaux
	5,893,718			O'Donnell	6,139,013			Pierce et al.
	5,902,184			Bennett	6,142,872 6,142,873			Walker et al. Weiss et al.
	5,902,983 5,910,048			Crevelt et al. Feinberg	6,142,874			Kodachi et al.
	5,911,418			Adams et al.	6,142,875			Kodachi et al.
	5,919,088		7/1999		6,146,273		11/2000	
	5,927,714			Kaplan	6,149,156		11/2000	
	5,934,672			Sines et al.	6,149,157 6,149,521		11/2000	Suan Sanduski
	5,935,002 5,941,773			Falciglia Harlick	6,152,823			Lacoste et al.
	5,941,773		8/1999 8/1999		6,155,925			Giobbi et al.
	5,947,820			Morro et al.	6,158,741			Koelling
	5,947,822		9/1999		6,159,095		12/2000	Frohm et al.
	5,951,011			Potter et al.	6,159,096			Yoseloff
	5,951,397			Dickinson	6,159,097		12/2000	
	5,964,463				6,159,098			Slomiany et al.
	5,967,894 5,976,015			Kinoshita et al. Seelig et al.	6,162,121 6,162,122		12/2000	Morro et al. Acres et al.
	5,976,015		11/1999	Moody et al.	6,165,070			Nolte et al.
	2,270,010		11/1///	oouy or al.	0,100,070	* *	12.2000	

(56)	Referen	ices Cited	6,319,127 B1		Walker et al.
U.S	S. PATENT	DOCUMENTS	6,322,078 B1 6,322,309 B1		Thomas et al.
6,168,520 B1	1/2001	Baerlocher et al.	6,328,649 B1 6,334,814 B1		Randall et al. Adams
6,168,523 B1		Piechowiak et al.	6,336,857 B1	1/2002	McBride
6,173,955 B1		Perrie et al.	6,336,859 B2 6,336,860 B1	1/2002	Jones et al. Webb
6,174,233 B1 6,174,235 B1		Sunaga et al. Walker et al.	6,336,862 B1	1/2002	Byrne
6,183,366 B1		Goldberg et al.	6,336,863 B1 6,338,678 B1		Baerlocher et al. Seelig et al.
6,186,894 B1 6,190,254 B1		Mayeroff Bennett	6,340,158 B2		Pierce et al.
6,190,255 B1	2/2001	Thomas et al.	6,343,989 B1 6,345,824 B1		Wood et al. Selitzky
6,193,606 B1 6,203,010 B1		Walker et al. Jorasch et al.	6,346,043 B1		Colin et al.
6,203,429 B1	3/2001	Demar et al.	6,347,738 B1		Crevelt et al. Gilmore et al.
6,203,430 B1 6,206,374 B1	3/2001 3/2001	Walker et al.	6,347,996 B1 6,358,144 B1		Kadlic et al.
6,206,782 B1	3/2001	Walker et al.	6,358,149 B1		Schneider et al.
D441,031 S 6,210,275 B1	4/2001 4/2001	Seelig et al.	6,361,441 B1 6,364,766 B1		Walker et al. Anderson et al.
6,210,277 B1	4/2001		6,364,767 B1	4/2002	Brossard et al.
6,210,279 B1		Dickinson	6,364,768 B1 6,364,769 B1		Acres et al. Weiss et al.
6,213,876 B1 6,217,448 B1	4/2001	Moore, Jr. Olsen	6,368,216 B1	4/2002	Hedrick et al.
6,220,593 B1		Pierce et al.	6,368,218 B2 6,371,852 B1	4/2002 4/2002	Angell, Jr.
6,220,959 B1 6,220,961 B1		Holmes, Jr. et al. Keane et al.	6,375,187 B1		Baerlocher
6,224,482 B1	5/2001	Bennett	6,375,567 B1	4/2002	
6,224,483 B1 6,224,484 B1		Mayeroff Okuda et al.	6,375,568 B1 6,375,569 B1	4/2002	Roffman et al. Acres
6,227,970 B1		Shimizu et al.	6,375,570 B1	4/2002	
6,227,971 B1	5/2001	Weiss Mayeroff	6,386,974 B1 6,386,977 B1	5/2002	Adams Hole
6,231,442 B1 6,231,445 B1	5/2001		6,398,218 B1	6/2002	Vancura
6,234,879 B1		Hasegawa et al.	6,398,220 B1 6,398,644 B1	6/2002 6/2002	Inoue Perrie et al.
6,234,897 B1 6,238,287 B1		Frohm et al. Komori et al.	6,398,645 B1	6/2002	Yoseloff
6,238,288 B1	5/2001	Walker et al.	6,406,369 B1 6,413,160 B1		Baerlocher et al. Vancura
D443,313 S 6,241,608 B1		Brettschneider Torango	6,416,408 B2	7/2002	Tracy et al.
6,244,958 B1	6/2001	Acres	6,416,409 B1 6,419,579 B1		Jordan Bennett
6,251,013 B1 6,254,481 B1	6/2001 7/2001	Bennett Iaffe	6,419,583 B1		Crumby et al.
6,254,483 B1	7/2001	Acres	6,428,412 B1		Anderson et al.
6,257,981 B1 6,261,128 B1		Acres et al. Heim et al.	6,431,983 B2 6,435,500 B2	8/2002 8/2002	Gumina
6,261,177 B1	7/2001	Bennett	6,435,511 B1		Vancura et al.
6,264,557 B1 6,267,669 B1		Schneier et al. Luciano, Jr. et al.	6,435,968 B1 6,439,993 B1		Torango O'Halloran
6,270,409 B1		Shuster	6,439,995 B1	8/2002	Hughs-Baird et al.
6,270,411 B1		Gura et al. Crawford et al.	6,443,452 B1 6,443,837 B1	9/2002 9/2002	Brune Jaffe et al.
6,270,412 B1 6,287,202 B1		Pascal et al.	6,450,884 B1	9/2002	Seelig et al.
6,293,864 B1 6,293,866 B1		Romero Wallson et al	6,454,266 B1 6,454,651 B1		Breeding et al. Yoseloff
RE37,414 E		Walker et al. Harlick	RE37,885 E	10/2002	Acres et al.
6,299,165 B1		Nagano Varanta 65	6,461,241 B1 6,464,582 B1		Webb et al. Baerlocher et al.
6,299,170 B1 6,302,398 B1		Yoseloff Vecchio	6,471,208 B2	10/2002	Yoseloff et al.
6,302,790 B1	10/2001	Brossard	6,471,591 B1 D465,531 S		Crumby Luciano, Jr. et al.
6,302,793 B1 6,305,686 B1		Fertitta, III et al. Perrie et al.	6,481,713 B2	11/2002	Perrie et al.
6,309,298 B1	10/2001	Gerow	6,482,089 B2 6,491,584 B2		Demar et al. Graham et al.
6,309,299 B1 6,309,300 B1	10/2001	Weiss Glavich	6,494,454 B2	12/2002	
6,311,976 B1	11/2001	Yoseloff	6,506,117 B2		DeMar et al.
6,312,330 B1 6,312,332 B1		Jones et al. Walker et al.	6,506,118 B1 6,508,707 B2		Baerlocher et al. DeMar et al.
6,312,333 B1	11/2001	Acres	6,511,375 B1	1/2003	Kaminkow
6,312,334 B1 6,315,660 B1		Yoseloff DeMar et al.	6,511,376 B2 6,514,141 B1		Walker et al. Kaminkow et al.
6,315,662 B1		Jorasch et al.	6,517,433 B2		Loose et al.
6,315,663 B1		Sakamoto	6,520,855 B2		DeMar et al.
6,315,664 B1 6,319,122 B1		Baerlocher et al. Packes, Jr. et al.	6,533,273 B2 6,533,658 B1		Cole et al. Walker et al.
6,319,123 B1	11/2001	Paludi	6,533,660 B2	3/2003	Seelig et al.
6,319,124 B1		Baerlocher et al.	6,533,664 B1		Crumby Luciano et al.
6,319,125 B1	11/2001	Acres	6,537,150 B1	3/2003	Luciano et al.

(56)			Referen	ces Cited	6,776,715		8/2004	
		U.S.	PATENT	DOCUMENTS	6,790,141 6,800,030		9/2004 10/2004	Acres
					6,805,352 6,811,483		10/2004	Hunter Webb et al.
	7,152 6,134			Seelig et al. Shrairman et al.	6,832,956			Boyd et al.
,	6,374			Esposito et al.	6,832,958	B2	12/2004	Acres et al.
	7,131			Foodman et al.	6,837,788 6,857,958	B2	1/2005 2/2005	Cannon
	7,242 4,283			Sugiyama et al. Vancura et al.	6,866,583			Glavich et al.
	4,705			Cumbers	6,869,361	B2	3/2005	Sharpless et al.
6,56	1,904	B2		Locke et al.	6,884,168			Wood et al.
	5,434 5,436		5/2003	Acres Baerlocher	6,887,154 6,889,849			Luciano, Jr. et al. Heidel et al.
,	9,015			Baerlocher et al.	6,899,625	B2	5/2005	Luciano, Jr. et al.
6,572	2,471	B1		Bennett	6,905,406			Kaminkow et al. Hedrick et al.
	5,830 5,832			Baerlocher et al. Manfredi et al.	6,908,387 6,910,964		6/2005	
	7,733			Charrin	6,913,532	B2	7/2005	Baerlocher et al.
6,582	2,307	B2	6/2003	Webb	6,918,832			Baerlocher et al.
	9,115			Walker et al.	6,918,834 6,935,951			Vancura Paulsen et al.
	2,458 2,460		7/2003 7/2003	Torango	6,935,958			Nelson
	5,853		7/2003	Osawa	6,939,234		9/2005	Beatty
	5,854			Hughs-Baird et al.	6,942,574 RE38,812			LeMay et al. Acres et al.
	9,185 9,186			Kaminkow et al. Walker et al.	6,955,600			Glavich et al.
	9,188			Hirsch et al.	6,966,834		11/2005	
	9,190		7/2003		7,004,466 7,029,395			Gauselmann Baerlocher
	9,193 1,771			Baerlocher et al. Charrin	7,029,393			Charrin
,	2,135			Gerrard	7,056,215	B1	6/2006	Olive
6,602	2,137	B2		Kaminkow et al.	7,169,042			Muir et al. Gauselmann
	4,740 7,437			Singer et al. Casey et al.	7,578,739 7,666,093			Lafky et al.
	7,438			Baerlocher et al.	7,780,520	B2	8/2010	Baerlocher
6,60	7,441	B1	8/2003	Acres	7,959,509			Saffari et al.
	9,971 9,972			Vancura	8,162,666 2001/0024971			Parham Brossard
	9,972		8/2003	Seelig et al. Weiss	2001/0049303		12/2001	
	6,142		9/2003	Adams	2001/0055990		12/2001	
	6,531			Mullins	2002/0002674 2002/0042296			Grimes et al. Walker et al.
	0,046 6,758		9/2003 9/2003	Parham et al.	2002/0045472	A1	4/2002	
6,634	4,944	B2	10/2003	Osawa	2002/0045475			Glavich et al.
	7,747 5.073		10/2003		2002/0071557 2002/0094855			Nguyen Berman
,	5,073		11/2003	Lemay et al. Rowe	2002/0094862		7/2002	Inoue
	8,759		11/2003	Vancura	2002/0116615			Nguyen et al.
	8,762			Walker et al.	2002/0138594 2002/0142822		9/2002 10/2002	Baerlocher et al.
	2,378 6,040			Cannon et al. Brosnan et al.	2002/0142829		10/2002	
	6,043			Seelig et al.	2002/0151345		10/2002	
	6,047		12/2003	Tarantino et al.	2002/0151354 2002/0152120			Boesen et al. Howington
	6,048 6,052		12/2003 12/2003	Abramopoulos et al.	2002/0155874		10/2002	Byrne
	9,864			McGahn et al.	2002/0155880			Glavich et al.
	6,765			Vancura	2002/0165023 2002/0187834			Brosnan et al. Rowe et al.
	2,959 5,152			Moody et al. Prasad et al.	2002/0198036			Baerlocher et al.
	6,513			Gauselmann	2003/0014370			Charrin
	2,419			Webb et al.	2003/0027618 2003/0027625		2/2003 2/2003	
	2,420 8,977			Webb et al. Baerlocher et al.	2003/0027630			Kelly et al.
6,692	2,355	B2		Baerlocher et al.	2003/0028779		2/2003	
	2,694			Nordman	2003/0036430 2003/0040355			Cannon Baerlocher
	2,695 2,697		3/2004	Mothwurf et al.	2003/0040358			Rothkranz et al.
	5,756		4/2004	Inoue	2003/0040360			Kaminkow
	9,630		4/2004		2003/0045337		3/2003	
	6,204 6,563		4/2004 4/2004	Inoue Baerlocher et al.	2003/0045348 2003/0045350			Palmer et al. Baerlocher et al.
	3,390			Walker et al.	2003/0045353			Paulsen et al.
6,746	6,328	B2		Cannon et al.	2003/0050106			Lyfoung
	9,504			Hughs-Baird	2003/0050111		3/2003	
	9,510 4,346		6/2004 6/2004	Giobbi Eiserling et al.	2003/0054875 2003/0054878		3/2003	Marks et al. Benoy et al.
	1,632			Bansemer et al.	2003/0060254		3/2003	Cuddy et al.
6,770	6,714	B2	8/2004	Ungaro et al.	2003/0060266	A1	3/2003	Baerlocher

US 9,202,338 B2

Page 6

(56)	Referei	nces Cited	2004/0150161 A1	8/2004	
11.0	DATENT	DOCUMENTS	2004/0152509 A1 2004/0155399 A1	8/2004 8/2004	
0.5	. FAILINI	DOCUMENTS	2004/0157658 A1	8/2004	
2003/0060267 A1	3/2003	Glavich et al.	2004/0171416 A1	9/2004	
2003/0060269 A1		Paulsen et al.	2004/0171420 A1 2004/0180715 A1	9/2004 9/2004	
2003/0060272 A1		Glavich et al.	2004/0180713 A1 2004/0183251 A1	9/2004	
2003/0060279 A1 2003/0064772 A1	4/2003	Torango Tempest et al.	2004/0235552 A1	11/2004	
2003/0064773 A1		Baerlocher et al.	2004/0242297 A1	12/2004	Walker
2003/0064776 A1		Byrne	2005/0003880 A1		Engleman Kelly et al.
2003/0064785 A1 2003/0064790 A1	4/2003	Stone et al. Hughs-Baird et al.	2005/0026694 A1 2005/0032573 A1	2/2005	Acres et al.
2003/0004790 A1 2003/0069056 A1		Cormack et al.	2005/0053672 A1	3/2005	
2003/0069064 A1		Ainsworth	2005/0054429 A1		Baerlocher et al.
2003/0073482 A1		Baerlocher et al.	2005/0055113 A1 2005/0059467 A1	3/2005 3/2005	Gauselmann Saffari et al.
2003/0078089 A1 2003/0083943 A1		Gary et al. Adams et al.	2005/0059477 A1	3/2005	Joshi et al.
2003/0092484 A1		Schneider et al.	2005/0064930 A1	3/2005	
2003/0109306 A1		Karmarkar	2005/0070356 A1	3/2005	
2003/0119583 A1		Kaminkow et al.	2005/0075163 A1 2005/0079908 A1	4/2005	Cuddy et al.
2003/0144965 A1 2003/0146574 A1		Prasad et al. Duhamel	2005/0079911 A1		Nakatsu
2003/0148808 A1	8/2003		2005/0086478 A1		Peinado et al.
2003/0162584 A1		Hughs-Baird et al.	2005/0090307 A1	4/2005 5/2005	Walker et al.
2003/0162585 A1		Bigelow et al.	2005/0096130 A1 2005/0101374 A1	5/2005	
2003/0181231 A1 2003/0182574 A1		Vancura et al. Whitten et al.	2005/0101375 A1		Webb et al.
2003/0186733 A1		Wolf et al.	2005/0101384 A1		Parham
2003/0195027 A1		Baerlocher et al.	2005/0119047 A1 2005/0137010 A1	6/2005	Olive Enzminger et al.
2003/0199321 A1 2003/0207709 A1		Williams Paotrakul	2005/0143168 A1	6/2005	Torango
2003/0207709 A1 2003/0207710 A1		Rodgers et al.	2005/0143169 A1	6/2005	Nguyen et al.
2003/0211879 A1	11/2003	Englman	2005/0159211 A1	7/2005	U
2003/0211884 A1		Gauselmann	2005/0163377 A1 2005/0176488 A1	7/2005 8/2005	
2003/0216165 A1 2003/0216166 A1	11/2003 * 11/2003	Singer et al. Baerlocher et al 463/20	2005/0178716 A1	8/2005	Suri
2003/0222402 A1	12/2003	Olive	2005/0192083 A1		Iwamoto
2003/0223803 A1		De Schrijver	2005/0192088 A1 2005/0192099 A1	9/2005 9/2005	Hartman et al.
2003/0228899 A1 2003/0228904 A1	12/2003	Evans Acres et al.	2005/0192099 A1 2005/0197180 A1		Nguyen et al. Kaminkow et al.
2003/0228904 AT 2003/0232643 AT	12/2003		2005/0209004 A1	9/2005	Torango
2003/0232647 A1	12/2003		2005/0215313 A1	9/2005	
2003/0236116 A1	12/2003		2005/0227754 A1 2005/0239542 A1	10/2005 10/2005	Kaminkow et al. Olsen
2004/0000754 A1 2004/0002372 A1	1/2004	Inoue Rodgers et al.	2005/0267610 A1	12/2005	Shinoda
2004/0009807 A1	1/2004		2005/0282626 A1	12/2005	Manfredi et al.
2004/0009808 A1		Gauselmann	2006/0003829 A1 2006/0009285 A1	1/2006 1/2006	Thomas
2004/0009811 A1 2004/0012145 A1	1/2004	Torango Inoue	2006/0009283 AT 2006/0019737 AT	1/2006	Pryzby et al. Yang
2004/0012143 A1 2004/0014516 A1		Inoue	2006/0025195 A1	2/2006	Pennington et al.
2004/0014517 A1	1/2004	Inoue	2006/0025201 A1	2/2006	Van Asdale
2004/0017041 A1		Inoue	2006/0025210 A1 2006/0026604 A1	2/2006 2/2006	Johnson Tan et al.
2004/0018866 A1 2004/0023716 A1	1/2004 2/2004	Gauselmann	2006/0030397 A1	2/2006	
2004/0026854 A1		Inoue	2006/0030403 A1		Lafky et al.
2004/0029631 A1		Duhamel	2006/0035694 A1 2006/0035706 A1	2/2006 2/2006	
2004/0036218 A1 2004/0038726 A1		Inoue Inoue	2006/0036552 A1	2/2006	Gunyakti et al.
2004/0038741 A1		Gauselmann	2006/0040732 A1	2/2006	Baerlocher et al.
2004/0041340 A1		Inoue	2006/0040736 A1	2/2006	Baerlocher et al.
2004/0048644 A1 2004/0048649 A1		Gerrard et al. Peterson et al.	2006/0052159 A1 2006/0052161 A1	3/2006	Cahill et al. Soukup et al.
2004/0048652 A1		Ching et al.	2006/0052162 A1	3/2006	Soukup et al.
2004/0053658 A1	3/2004	Rothranz	2006/0068897 A1	3/2006	Sanford et al.
2004/0053659 A1	3/2004		2006/0073877 A1 2006/0073889 A1	4/2006 4/2006	Rodgers et al. Edidin et al.
2004/0053670 A1 2004/0053671 A1		Rothkranz et al. Nordman	2006/0073897 A1	4/2006	Englman et al.
2004/0053672 A1		Baerlocher	2006/0116201 A1	6/2006	Gauselmann
2004/0053673 A1	3/2004		2006/0142079 A1	6/2006	Ikehara et al.
2004/0053683 A1		Hartl et al. Nordman	2006/0142086 A1 2006/0154718 A1	6/2006 7/2006	Blackburn et al. Willyard et al.
2004/0053687 A1 2004/0072615 A1	3/2004 4/2004		2006/0174718 A1 2006/0178203 A1	8/2006	•
2004/0072619 A1	4/2004	•	2006/0183535 A1	8/2006	
2004/0087368 A1	5/2004		2006/0183537 A1		Dickerson
2004/0092304 A1	5/2004		2006/0183538 A1	8/2006	Michaelson et al.
2004/0121840 A1 2004/0137982 A1	6/2004 7/2004		2006/0281527 A1 2006/0287077 A1	12/2006 12/2006	Dunaevsky et al. Grav et al.
2004/0137982 AT 2004/0147306 AT		Randall et al.	2007/0026941 A1		Block et al.

(56)	Refere	nces Cited	GB	2 096 376 A	10/1982
	U.S. PATENT	DOCUMENTS	GB GB	2 097 160 A 2 100 905 A	10/1982 1/1983
	0.00.11.11.11		GB	2 117 155 A	10/1983
	50271 A1 3/2007	2	GB	2 117 952 A	10/1983
		Block et al.	GB	2 118 445	11/1983
		Webb et al.	GB GB	2 144 644 A 2 137 392 A	3/1984 10/1984
	02943 A1 8/2007 59711 A1* 11/2007		CD	2 137 392 A 2 139 390	11/1984
		Baerlocher et al.	GB	2 142 457 A	1/1985
			GB	2 147 773	5/1985
	FOREIGN PATE	ENT DOCUMENTS	GB GB	2 148 135 2 151 054 A	5/1985 7/1985
	# C = 0.0.1	44/400	GB	2 151 054 A 2 153 572 A	8/1985
AU AU	567001 585160	11/1987 6/1989	GB	2 161 008 A	1/1986
AU	589158	10/1989	GB	2 161 009 A	1/1986
AU	593059	2/1990	GB	2 170 636 A	8/1986
AU	630112	3/1990	GB GB	2 180 682 A 2 181 589 A	4/1987 4/1987
AU AU	628330 633469	9/1992 1/1993	GB	2 181 383 A 2 183 882 A	6/1987
ΑU	649009	5/1994	GB	2 201 821 A	9/1987
AU	655801	1/1995	GB	2 191 030 A	12/1987
AU AU	1996 70247 680920	4/1997 8/1997	GB GB	2 222 712 A 2 226 436 A	3/1990 6/1990
AU	710015	9/1997	GB GB	2 226 430 A 2 226 907 A	7/1990
AU	766312	10/1997	GB	2 231 189	11/1990
AU	722969 1998 63553 A	6/1998 10/1998	GB	2 242 300	9/1991
AU AU	1998 83333 A 1998 84162	3/1999	GB	2 282 690	4/1995
ΑU	707687	7/1999	GB GB	2 313 792 2 322 217 A	10/1997 8/1998
AU	1999 17318	9/1999	GB GB	2 333 880 A	9/1998
AU AU	709724 711501	9/1999 10/1999	GB	2 328 311	2/1999
AU	716299	2/2000	GB	2 353 128 A	2/2001
AU	721968	7/2000	GB	2 383 668 A	11/2001
AU	722107	7/2000	GB JP	2 387 703 7148307	10/2003 6/1995
AU AU	728788 2001 1000032	1/2001 11/2001	JР	2002-320703	11/2002
AU	2001 1000033	11/2001	WO	WO 94/12256	6/1994
AU	748263	5/2002	WO	WO 95/22811	8/1995
AU AU	749222 754689	6/2002 11/2002	WO	WO 95/30944	11/1995
AU	758306	3/2003	WO	WO 97/12338	4/1997
AU	1999 43453 C	4/2003	WO WO	WO 97/27568 WO 97/32285	7/1997 9/1997
CA DE	2 334 546 3415114	8/2001 11/1985	wo	WO 98/35309	8/1998
DE	8710757	11/1987	WO	WO 98/47115	10/1998
DE	3700861	7/1988	WO	WO 98/51384	11/1998
DE DE	3638100 3915655	11/1988 11/1990	WO	WO 99/03078	1/1999
DE DE	3917683	12/1990	WO	WO 99/10849	3/1999
DE	4200254	8/1993	WO WO	WO 00/12186 WO 00/32286	3/2000 6/2000
DE	4301855	7/1994	WO	WO 00/66235	11/2000
DE DE	195 15 983 19600787 C2	11/1996 5/1997	WO	WO 00/76606	12/2000
DE	19613455 C2	8/1997	WO	WO 01/10523	2/2001
DE	19936196 A1	1/2001	WO	WO 01/15055	3/2001
DE EP	3700861 A1 0 342 797	8/2004 11/1989	WO	WO 01/15790	3/2001
EP	0 444 932	2/1991	WO WO	WO 01/26019 WO 01/33478	4/2001 5/2001
EP	0 449 433 A2	10/1991	wo	WO 02/07836	1/2002
EP EP	0 521 599 0 798 676 A1	1/1993 10/1997	WO	WO 03/026754	4/2003
EP	0 874 337 A1	10/1998	WO	WO 03/030066	4/2003
EP	0 926 645 A2	6/1999	WO	WO 03/075235	9/2003
EP	0 944 030 A2	9/1999	WO	WO 03/083789	10/2003
EP EP	0 945 837 A2 0 981 119 A2	9/1999 2/2000	WO WO	WO 2004/035161 WO 2004/066061	4/2004 8/2004
EP	0 984 408 A2	3/2000	WO	WO 2004/06001 WO 2005/27058	3/2004
EP	0 984 409 A2	3/2000	wo	WO 2005/076193	8/2005
EP EP	1 003 138 A2 1 467 329 A2	5/2000 10/2004	WO	WO 2005/081623	9/2005
EP	1 498 860 A1	1/2005	WO	WO 2005/083599	9/2005
EP	1 513 114 A2	3/2005	WO	WO 2005/099425	10/2005
EP	1 528 516 A2	5/2005	WO	WO 2005/099845	10/2005
EP GB	1 528 517 A2 912 685	5/2005 12/1962	WO WO	WO 2005/106702 WO 2005/113093	11/2005 12/2005
GB GB	2 083 936 A	3/1982	wo	WO 2006/014770	2/2006
					

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO WO 2006/014883 2/2006 WO WO 2006/014990 2/2006 WO WO 2006/039366 4/2006

OTHER PUBLICATIONS

American Bandstand Article written by in Strictly Slots, published in 2002.

American Bandstand Brochure written by Anchor Games, published in 2001

Aristrocrat Brochure, written by Aristocrat Gaming, published in 2004

Atronic Systems Progressive Products at G2E, published by Atronic in 2004, printed from ForRelease.com.

Austin Powers in Goldmember[™] Advertisement written by IGT, published in 2003.

Bally Slot Machines Electro-Mechanicals 1964-1980 Book [In Part], Revised 3rd Edition written by Marshall Fey.

Big Shot!™ Advertisement published by Aristocrat Technologies, Inc., published in 2002.

Big Top Keno Advertisement published by Aristocrat Technologies, Inc., published in 2000.

Bingo Game Brochure written by Casino Data System, published in 1998.

Bonus Roulette Brochure written by F. Franco, published prior to Sep. 2003.

Buck's Roulette Brochure written by R. Franco, published prior to Sep. 2003.

Cartoon Jackpots description, printed from www.ballygaming.com/home.asp, on Feb. 4, 2005.

Cash Express Advertisements, written by Aristocrat, published in

Cashing In Article, written by Frank Legato, published in Strictly Slots Aug. 2006.

Stots Aug. 2006. Chariot's of Fortune Brochure written by R. Franco, published prior

to Sep. 2003. Classic Pot of Gold Brochure written by Ace Coin Equipment Ltd.,

published prior to Sep. 2003. Crazy Fruits Article written by Strictly Slots, published in Apr. 2001.

Cyberdyne Gaming Brochure written by Cyberdyne Gaming, published prior to Sep. 11, 2003.

 $Double\ Diamond\ Girls\ Advertisement,\ written\ by\ A.C.\ Coin\ and\ Slot\ Services\ Company,\ published\ prior\ to\ Sep.\ 11,\ 2003.$

Double Spin Five Times Pay Advertisement, written by IGT, published prior to 2000.

Double up Poker Game Description written by IGT, available prior to Sep. 2000.

Easy Riches Article, written by Strictly Slots, published in Aug. 2001. Elvira® Mistress of the DarkTM Advertisement written by IGT, published in 2002.

Elvis Hits Advertisement written by IGT, published in 1999.

Fast Buck Systems Manual, written by International Game Technology, available to Mirage shift supervisors at least as early as May 30, 1990.

Fortune Cookie Brochure written by IGT, published in 2000.

Full House Brochure written by Anchor Games, published in 2000. Gold Fever Advertisement, written by Atronic International Casino, published in 1999.

Gold Fever Advertisement, written by Casino Data Systems, published in 1997.

High Low Card Game written by Qeocities.com, printed May 3, 2001.

High Roller Video Article, written by Frank Legato, published in Strictly Slots Mar. 2001.

Holy Smoke Brochure written by Impulse Gaming Ltd., published prior to Sep. 2003.

Honeymooners Advertisement, written by AC Coin & Slot, published in 2002.

Hot Shot Progressive Article, written by Strictly Slots, published in Feb. 2006.

In Between Game Description written by IGT, available prior to Sep. 2000.

Jack and the Beanstalk™ Article written by Strictly Slots, published Jul. 2002

Jackpot Bingo, [online] [printed on Apr. 12, 2001]. Retrieved from the Internet at <URL: http://www.csds.com/gaming/g-progressiv.htm>

Jackpot Carnival Hyperlink Advertisement, written by Aristocrat, published prior to 2002.

Jackpot Hotline Advertisement, written by AC Coin and Slot, published prior to Sep. 2003.

Jackpot Hunter Advertisement, written by IGT, available prior to Jan. 2005

Jewel in the Crown Advertisement, written by IGT, published in

Jewel in the Crown Brochure written by Barcrest, Ltd, published prior to 2000.

King of the GrillTM Brochure written by AC Coin & Slot, published prior to Sep. 2003.

Lemons, Cherries and Bell-Fruit-Gum written by Richard M. Bueschel, pp. 1-4, 39-41, 64, 70, 137, 149-150, 195-196 and 251, 304-314, published Nov. 1995.

Line-Up Brochure written by AC Coin & Slot, published prior to Sep. 2003

Little Green Men Jr.TM Advertisement written by AC Coin & Slot, published prior to Sep. 11, 2003.

Little Green Men $\operatorname{Jr}^{\operatorname{TM}}$ Article written by Strictly Slots, published in

Magic 8 Ball Advertisement written by IGT, published in 2002.

Match Reel Game Bonus Description, written by IGT, published prior to 2000.

Mikohn Product Catalog, Chapters 1, 2, 6, 7 and 8, written by Mikohn, published in Jan. 1993.

Mikohn Ripley's Believe It or Not Article written by Strictly Slots published in 2001.

Mikohn Super Controller Manual, Chapters 1 to 3 and 6 to 7, written by Mikohn, published in 1989.

Millioniser Article, written by Strictly Slots, published in Mar. 2004. Miss America Brochure written by AC Coin & Slot, published prior to Sep. 11, 2003.

Mix and Match Advertisement published by AC Coin & Slot, published prior to Sep. 2003.

Mix and Match Article written by Strictly Slots, published in Apr. 2002.

Money Grab Article written by Strictly Slots, published in Apr. 2001. Money Time advertisement, written by Mikohn Gaming, published in 1999.

Money to Burn Brochure written by WMS Gaming, Inc., published prior to 2001.

Monster Match Article, published in Strictly Slots Jan., 2002.

Monte Carlo Advertisement written by Bally Gaming, published prior to Sep. 2002.

M-Slot Series Primary Reel Product description from Lemons, Cherries and Bell-Fruit-Gum, written by Richard M. Bueschel, published in 1995.

On the Money! Article written by Strictly Slots, published in Dec. 2000.

Payout!TM Advertisement written by www.csds.com/Gaming/Products_/g_Payout.htm, printed on Jan. 15, 2001.

Payout!TM Article written by Casino Data Systems, published prior to Sep. 2003.

PEM—Precision Electronic Meter, written by GRIPS Electronic GmbH, printed from website reported as archived on Feb. 20, 1997 (available at http://web.archive.org/web/19970220165753/www.grips.com/pem.htm).

Penguin Pucks article, written by Note in Gaming Marketplace, published prior to 2004.

Pick a Prize Brochure written by Acres Gaming Incorporated, published prior to 2001.

(56) References Cited

OTHER PUBLICATIONS

Player Tracking on Slots, written by GRIPS Electronic GmbH, printed from website reported as archived on Feb. 20, 1997 (available at http://web.archive.org/web/19970220165921/www.grips.com/playtrac.htm).

Plinko Showcase Show Down written by International Game Technology, published in 2001.

Power Slotto Brochure published by AC Coin & Slot prior to 2002. Press Your Luck Brochure published by AC Coin & Slot prior to 2002.

Progressive Jackpot System article, printed from casinomagazine. com.managearticle.asp@c_290&a=518, on Jun. 21, 2004.

ProLINK Progressive Controller User/Reference Manual, written by Casino Data Systems, published in Apr. 1997.

Quick Pick Paytime Brochure written by Acres Gaming Incorporated, published prior to 2001.

 $R\&B^{TM}$ Brochure published by AC Coin & Slot, published prior to Sep. 2003.

Reel Dice Advertisement written by Gerber & Glass, published in 1936

Royal Roulette Brochure written by Impulse Gaming Ltd., published prior to Sep. 2003.

Run for Your Money Game Description written by Barcrest, published prior to 2001.

Scarne, Scarne's Encyclopedia of Card Games, 1973, HarperCollins Publishers, Inc., 278-279.

Scarne's New Complete Guide to Gambling (© 1997)—John Scarne, pp. 162-167.

Silver City Roundup Brochure published by AC Coin & Slot, published prior to Sep. 2003.

Slot Line Progressive Advertisement, written by IGT, published in

Slot Line Progressive Advertisement, written by IGT, published in

Slot Line Progressive Advertisement, written by IGT, published in 1995.

Slot Line Progressive Mega Jackpots Advertisement, written by IGT, published in 1997.

Slot Line Temperature Rising Game Description, written by IGT, published in 1998.

Slot Machine Buyer's Handbook, A Consumer's Guide to Slot Machines written by David L. Saul and Daniel R. Mead, published in 1998

Slot Machines A Pictorial History of the First 100 Years (pp. 216, 242 to 243), 5th edition, written by Marshall Fey, published in 1983-1997. Slot Machines and Coin-Op Games written by Bill Kurtz, pp. 16, 65, 105 and 111, 1991.

Slot Machines on Parade, 1st edition written by Robert N. Geddes and illustrated by Daniel R. Mead, published in 1980.

Sphinx Brochure written by Atronic Casino Technology, Ltd., published in 1997.

Spin Til You Win Information Sheet written by IGT, published in 1996.

Spin-A-Lot Brochure written by Acres Gaming Incorporated, published prior to 2001.

Super Cherry Advertisement written by IGT in 2001.

Surprize Gaming Machine Advertisement, written by Aristocrat Leisure Industries. Australia, published prior to 2004.

Surprize Software Specification for MV2030—var 01, written by Aristocrat Leisure Industries, Australia, published prior to 2004. Take Your Pick Article written by Strictly Slots, published in Mar.

Take Your Pick Brochure and Article written by IGT/Anchor Games, Strictly Slots, published in 1999.

Texas Tea [online], [printed on Mar. 21, 2001]. Retrieved from the Internet at <URL: http://www.igt.com/games/new_games/texastea.html>.

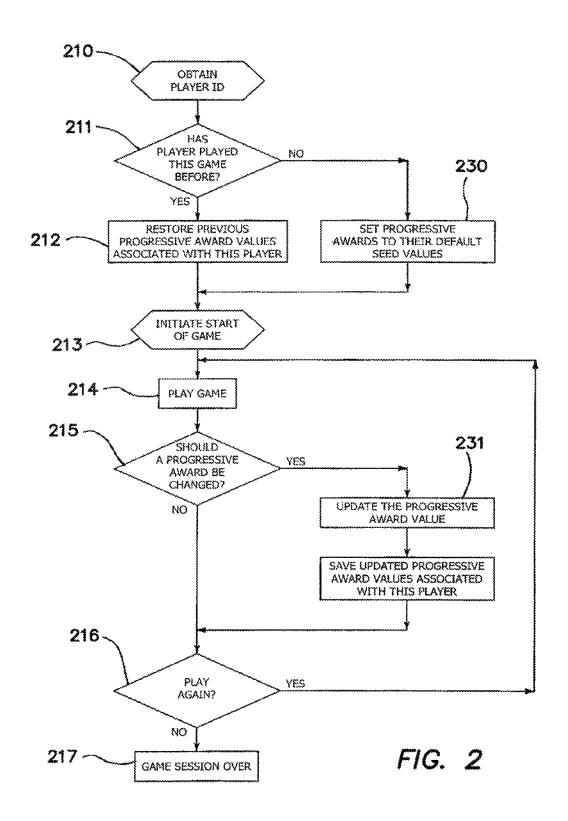
Texas Tea Advertisement, written by IGT, published in 2000.

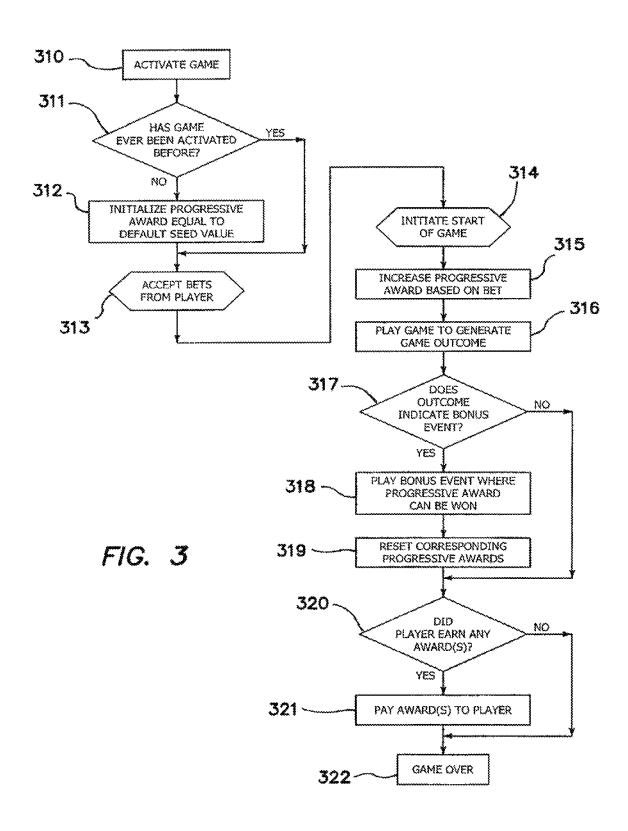
Texas Tea Article written by Strictly Slots, published in Jul. 2000.

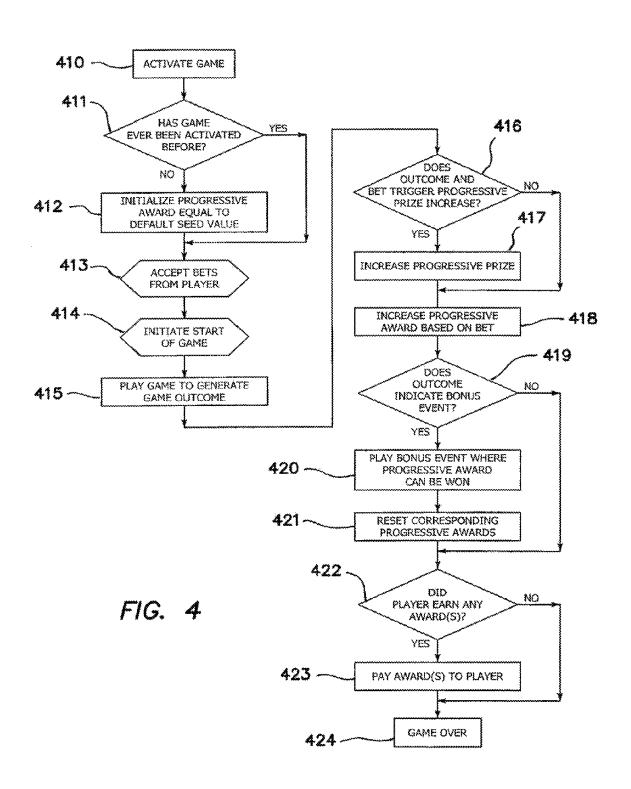
Top Dollar Brochure written by IGT, published in 1998.

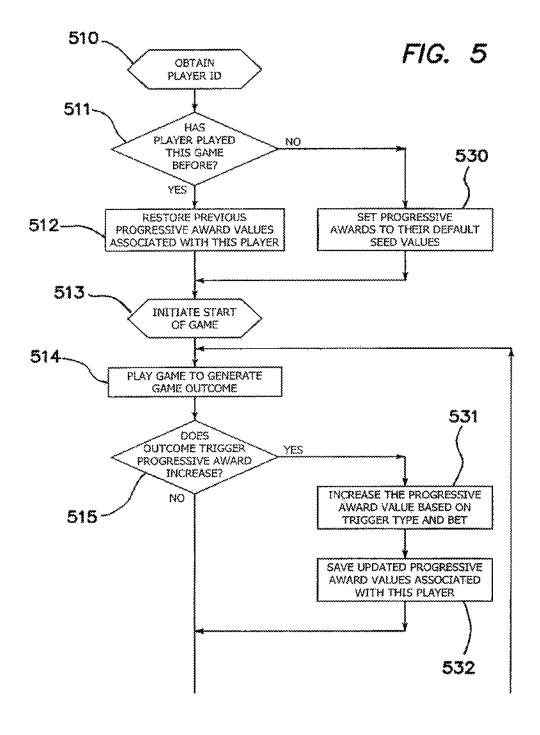
Wheel & Deal Brochure written by Strictly Slots, published in Dec. 2001.

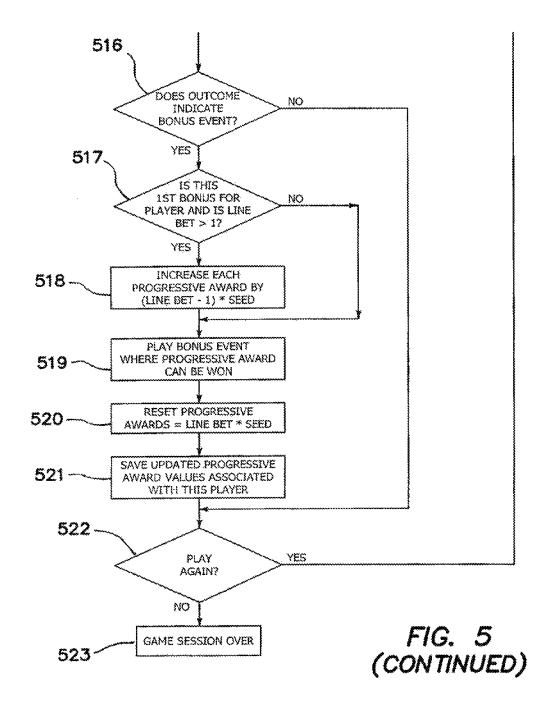
Wheel of Fortune Advertisement written by IGT, published in 1998. Wheel Poker Article, written by Strictly Slots, published prior to 2002.


Wide Area Progressive Link System, written by GRIPS Electronic GmbH, printed from website reported as archived on Feb. 20, 1997 (available at http://web.archive.org/web/19970220165457/www.grips.com/wap.htm).


Yahtzee Bonus Advertisement written by Mikohn, published in 1999. Advertisement, written by Aristocrat, published in 2004.


* cited by examiner




FIG. 1

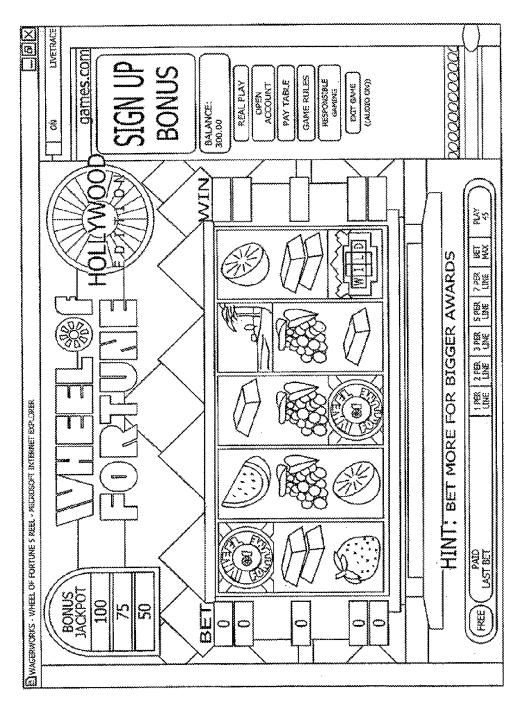


FIG. 6

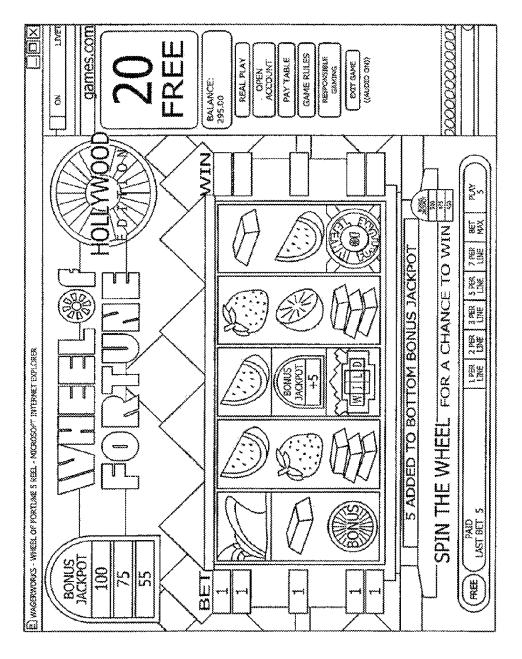


FIG. 7

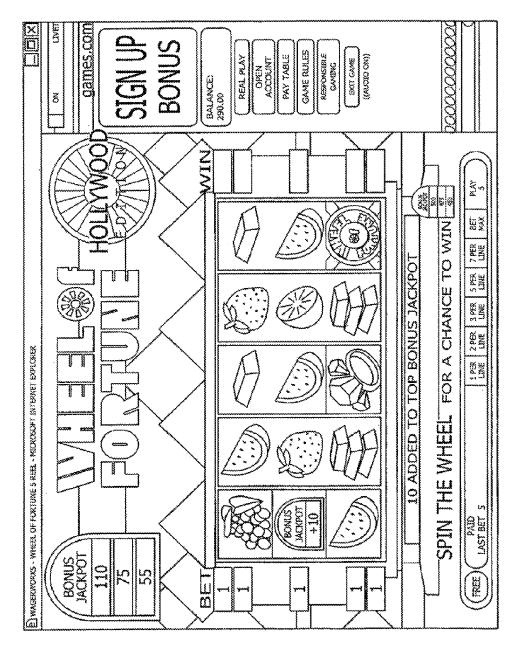


FIG. 8

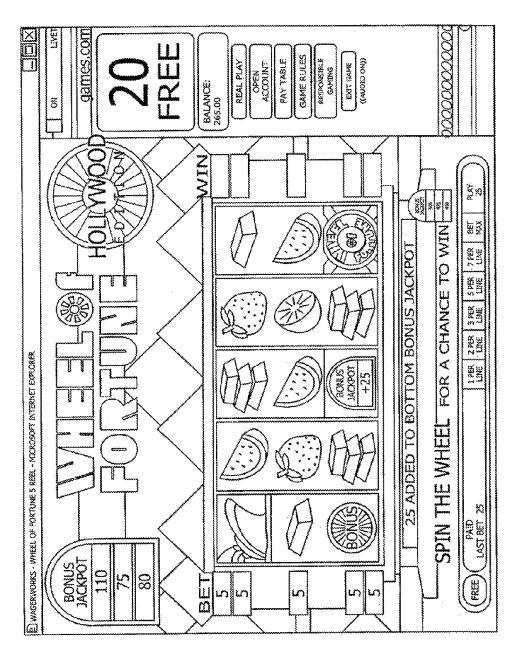


FIG. 9

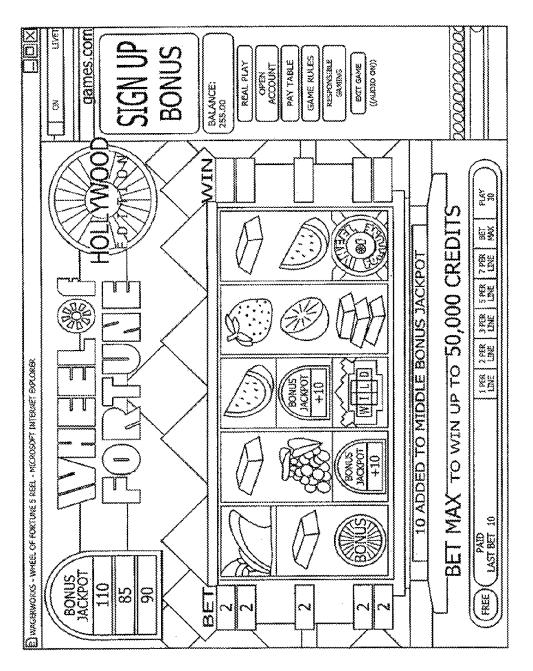
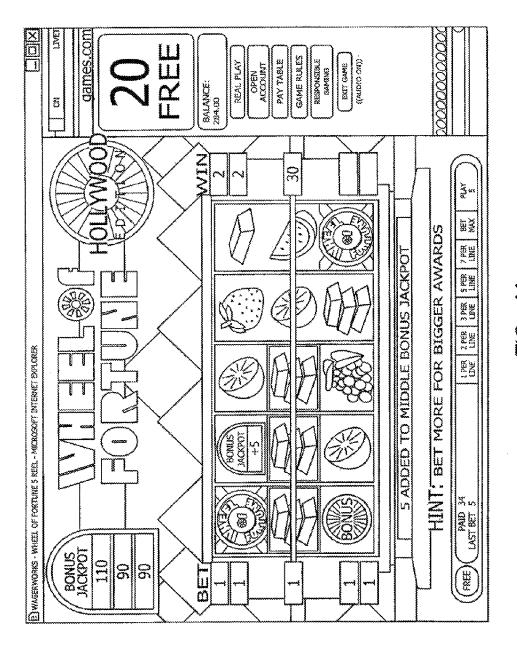



FIG. 10

にいい

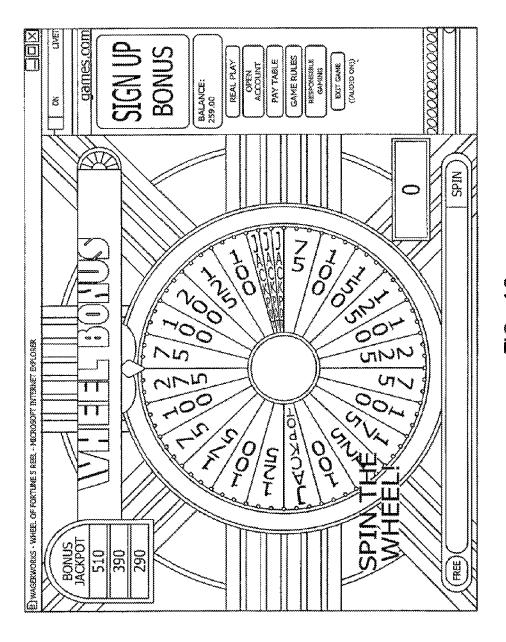


FIG. 12

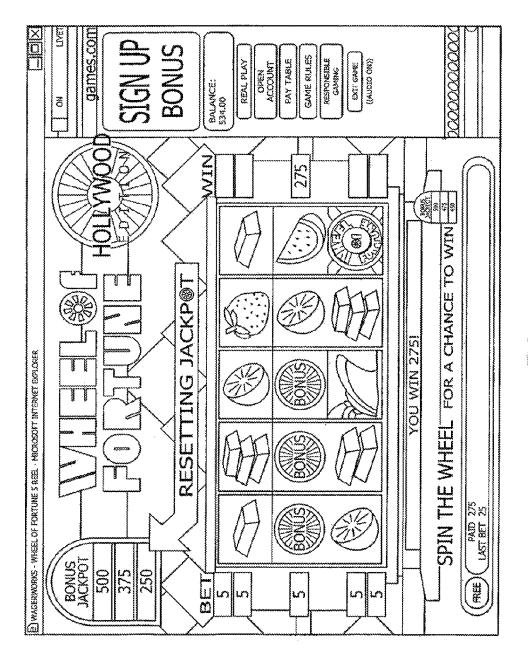


FIG. 13

GAMING METHOD AND DEVICE INVOLVING PROGRESSIVE WAGERS

PRIORITY CLAIM

This application is a continuation of, claims priority to and the benefit of U.S. patent application Ser. No. 13/793,746, filed on Mar. 11, 2013, which is a continuation of, claims priority to and the benefit of U.S. patent application Ser. No. 12/684,355, filed on Jan. 8, 2010, now U.S. Pat. No. 8,408, 10 993, which is a divisional of, claims priority to and the benefit of U.S. patent application Ser. No. 11/196,645, filed on Aug. 2, 2005, now U.S. Pat. No. 7,666,093, which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 60/598,305, filed on Aug. 3, 2004, the entire contents of 15 which are each incorporated by reference herein.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains or may contain material which is subject to copyright protection. The copyright owner has no objection to the photocopy reproduction by anyone of the patent document or the patent disclosure in exactly the form it appears in the Patent and Trademark Office patent file or records, but otherwise 25 reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

The embodiments of the present invention relate to casino 30 wagering games with one or more progressive awards that increase in value based on a random event, or other preestablished event or outcome, and/or reset if not won during a bonus event.

BACKGROUND

A number of wagering games feature awards which increase in value over time. Such awards are known as progressive awards. Typically progressive awards begin at a specific value known as a seed value or reset value and then increase over time based upon the number of eligible placed wagers. Usually, progressive awards increase by utilizing a specified fraction of each eligible placed wager. The phrase "eligible wager" refers to a pre-established wager amount, 45 typically the maximum possible wager, required for a progressive award to be won. Furthermore, some gaming jurisdictions mandate that only wagers which can result in a progressive award can be used to fund progressive award increases.

A common progressive award works as follows: When the game is first offered, or after the prior progressive award is won, the progressive award value is set to a specific value. Thereafter, a set percentage of each eligible wager is added to the progressive award value until a game outcome occurs 55 resulting in a player winning the progressive award.

A progressive award can involve wagers and play from a single machine or a number of machines. In the latter case, known as linked progressives, machines are configured in a bank of adjacent machines, or a plurality of machines across 60 multiple banks within a casino, or across a plurality of casinos within a regional geographic area or across a plurality casinos across a plurality of regional geographic areas. In many games with progressive awards, especially with linked progressive awards, increases in the progressive award are 65 cached such that the award value may be displayed as continuously and smoothly increasing rather than jumping up in

2

rapid, varied amounts. The progressive award is often displayed in a manner reminiscent of a car odometer to better give the impression of continual and smooth jackpot growth.

One notable exception to the common practice of increasing a progressive award for each eligible wager is evident in Silicon Gaming's video poker game, "Phantom Belle Playoff", that offers a discrete progressive award increase of a certain size after a certain number of eligible wagers have been placed. In this case, the progressive award increases after a specific number of maximum wagers has been placed.

Most games with progressive awards are configured to pay the progressive award based upon a primary game outcome. For example, in a slot machine game, a progressive award is won in response to a certain set of symbols, typically the top-most symbol(s), aligned along a certain pay line when a maximum wager has been placed. However there are some slot games that pay a progressive award as the outcome of a bonus event. Another example relates to a card game wherein a certain hand outcome occurs, such as a royal flush outcome.

Many casino games offer bonus events or bonus rounds beyond the primary game. Such a bonus can be triggered in response to an outcome of the primary game. For example, in a slot machine game the outcome may be based on certain symbols appearing in a certain configuration. Other games can be offered whereby the bonus is triggered based on a secondary event. For example, in the video poker game, Phantom Belle Playoff, the appearance of a special card from the deck has no effect on the primary game but causes a bonus round to be launched.

In a bonus event, the player typically is awarded a prize based upon a secondary outcome selection different from the primary game outcome. In slot games, like "Wheel of Gold" or "Wheel of Fortune", for example, the bonus round is triggered when a bonus symbol appears in a pre-established manner (either on the pay line on the last reel or on all positions on the pay line, based upon the game definition) and the player has placed a maximum wager. During the bonus round, the player initiates the spinning of the bonus wheel. Eventually the wheel slows to a stop. The wheel is separated into segments, each depicting an award. The player wins the award depicted on the wheel segment identified by a single pointer at an edge of the wheel after the wheel stops.

A bonus event typically involves the following features: results in the player receiving an award;

the actual award amount is often unknown to the player until bonus event is played;

uses prize reveal and/or selection mechanisms beyond the main game outcome;

player input is required to initiate the start of the bonus game:

in some cases, a bonus event may require increased player interactivity such as the player identifying selection spots to reveal hidden symbols; and/or

in some cases, a bonus event may involve actual player decisions such as whether to accept the current bonus award or forgo the same in lieu of the opportunity to seek a larger bonus award.

SUMMARY

One embodiment of the present invention comprises a method of conducting a wagering game, accepting a player wager, generating a game outcome, resolving the player wager by paying the player an award in response to the game outcome matching a predefined winning outcome, and in response to the game outcome matching a predefined outcome, increasing an associated progressive award value.

The embodiments of the present invention include a method and device for offering a casino game with one or more progressive awards with some or all of the following features:

the progressive award only increases based upon some 5 primary or secondary game outcome;

for a non-linked progressive award corresponding to a game linked to a player tracking system, any progressive award gains follow the player between play sessions; and/or

the progressive award can only be won during a bonus round and whether or not the bonus award is won, the bonus award is reset after the bonus game ends.

Thus, instead of increasing the progressive award for every eligible wager, the progressive jackpot only increases in response to a certain primary or secondary game outcome. Such a scheme increases player excitement and interest by making jackpot increases a special event instead of the standard routine, automatic event. The jackpot increase can become a psychological reward which does not have an 20 immediate negative financial impact on the casino offering the game. The feature may also help encourage players to play a given game more often since the players may feel more directly responsible for the increased progressive awards based upon their actual play.

Examples of primary progressive award increase triggers include (but are not limited to):

appearance of certain symbol(s), perhaps in certain location(s), during play of a slot machine game;

appearance of certain card(s), perhaps in certain hand positions, during play of a card game;

the occurrence of certain defined winning outcomes; and/ or

the occurrence of a non-winning outcome, especially in a very high hit frequency game.

The most basic example of a secondary progressive award increase trigger is increasing the progressive award randomly and independent of the primary game outcome. In one example, it involves the display of a secondary gaming element such as a wheel or other display. Another secondary 40 event example involves the use of a special feature reel in addition to standard game reels. Then, if a certain symbol appears on the special feature reel, perhaps in conjunction with certain primary game outcomes, it may trigger an increase of the progressive award.

As with standard games having progressive awards, a game may be configured to allow only progressive award increases when a certain betting requirement is met, for example, when a maximum wager is placed. Alternately, a game can be configured where all placed wagers are eligible.

When a progressive award is increased, there are a few methods to define the amount of the increase. A game can be configured to add the same amount for the same trigger. For games that allow for progressive award increases for a multiplicity of wager amounts, the award increase can be scaled 55 based upon the actual wager amount. Another game definition can result in different types of progressive award increase triggers that result in different progressive award increase amounts. Another game definition can result in the progressive award increase being randomly selected, perhaps from a 60 distribution of possible awards. Such variable progressive award increases can be part of a bonus round event. Another game definition can allow for different triggers that cause an increase in different progressive award values. Furthermore, different triggers can cause different increases in the progres- 65 sive award value. Moreover, a game definition can allow for multiple simultaneous triggers, each of which causes a pro4

gressive award increase, possibly of the same progressive award and/or different progressive awards.

Another aspect of the embodiments of the present invention is the concept of a personal progressive award following a player. Specifically, some game devices allow for individual player tracking, usually initiated by having the player insert his or her unique player identification card into a card reader installed in the machine. Player tracking is also possible in games offered via the Internet wherein the player is required to provide a user ID and password in order to play. A gaming system that can provide player tracking can also be designed to maintain progressive awards between play sessions for the same player. For example, if a given player is able to increase his personal progressive award to a certain amount, the progressive award remains at the same value the next time the player returns to play the game.

Another aspect of the embodiments of the present invention is the concept that a progressive award can only be won during a bonus round, and if the progressive award is not won, the progressive award is reset. For example, when a player initially starts a game having such a feature, the progressive award is set at a certain level which can increase as the player plays, either through traditional progressive award growth mechanisms or through the random increase mechanism aspect of the embodiments of the present invention. The player can only win a progressive award during play of a bonus round. Whether or not the player wins such a progressive award, all such progressive awards are reset upon exiting the bonus round.

There are additional aspects of the embodiments of the present invention related to setting and adjusting the progressive award value based upon the wager amount. One such aspect involves selecting the progressive award reset value based upon the amount of the wager. For example, a progressive jackpot value can be reset to the value of S×W, where S is the base seed value and W is the relevant wager amount placed during the game play when the bonus game or round is activated. Alternatively, a progressive award boost can be applied if a wager in excess of a minimum wager is placed during the game play when the bonus game or round is activated. For example, the jackpot value may be reset to the value S, but if the player's wager W is greater than 1 unit, the jackpot value is increased by S×(W-1) at the start of the bonus round. In a more specific example, the progressive award is reset to 100 units. Then, if during play of the game, the progressive award value is increased by 60 units, with a 5 unit wager in place, and a game outcome triggers a bonus round or game, the progressive award of 160 units is boosted by 400 units calculated as follows: 100*(5-1)=400 units to a total progressive award value of 560 units which the player has the opportunity to win during the bonus round.

The above disclosed two jackpot adjustments can both be offered in the same game. Specifically, for a game linked to a player tracking system, the progressive award value is set to S for the first time that a given player plays the game. The first time said player enters the bonus round and the player's wager is greater than 1 unit, a boost of $S\times(W-1)$ is added to the progressive award value. The boost only occurs on the first bonus round event for said player. Upon exiting a bonus round the first time or any subsequent time, the progressive award value is reset to $S\times W$.

All of the above described game features can also apply to game methods and devices which involve a plurality of progressive awards. Other variations, embodiments and features

of the present invention will become evident from the following detailed description, drawings and claims.

BRIEF DESCRIPTION OF THE FIGURES

- FIG. 1: Block diagram of a game embodiment having a random progressive advancement;
- FIG. 2: Block diagram of a game embodiment having a personal progressive award;
- FIG. 3: Block diagram of a game embodiment having a 10 bonus round progressive award (constant advance);
- FIG. 4: Block diagram of game embodiment having a bonus round progressive award (random advance);
 - FIG. 5: Block diagram of one exemplary game play;
- FIG. 6: Screen shot of exemplary game with said screen displaying initial Jackpot seed related to 1st game play;
- FIG. 7: Screen shot of exemplary game with said screen displaying wager amount added to bottom award;
- displaying 2× wager amount added to top award;
- FIG. 9: Screen shot of exemplary game with said screen displaying correspondence between larger wager amount and larger award increases;
- FIG. 10: Screen shot of exemplary game with said screen 25 displaying multiple award increases;
- FIG. 11: Screen shot of exemplary game with said screen displaying a winning outcome and corresponding award increase;
- FIG. 12: Screen shot of exemplary game with said screen 30 displaying a start of a bonus game w/pay line wager of 5 units causing one time awards boost; and
- FIG. 13: Screen shot of exemplary game with said screen displaying reset pf awards after bonus game concludes.

DETAILED DESCRIPTION

For the purposes of promoting an understanding of the principles in accordance with the embodiments of the present invention, reference will now be made to the embodiments 40 illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications of the inventive feature illustrated herein, and any additional applications of 45 the principles of the invention as illustrated herein, which would normally occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention claimed.

Turning to the drawings, FIG. 1 shows a block diagram 100 50 detailing one game embodiment of the present invention, namely a game having a random increase in a progressive award value based upon a game outcome. In the block diagram 100, a player first places a wager 110, initiates the game 111 and the game generates an outcome 112. Then, it is 55 determined whether the outcome causes the progressive award value to increase 113. If yes, it is determined whether the player's wager amount is sufficient to cause the progressive award value to increase 114. In other words, increasing the progressive award amount is dependent upon the game 60 outcome and the amount of the player wager. If the answer to the questions at steps 113 and 114 is positive, at step 115, the progressive award value is increased. If the answer to either one of the questions at steps 113 and 114 is negative, the progressive award value is not increased. It is next determined 65 whether the game outcome is a winning outcome 116. If so, the player is paid an award 117. At step 118, it is determined

6

whether the progressive award was won. If not, the game ends 120. If yes, the progressive award value is re-set 119.

It is noted that in block diagram 100, the nature of the game outcome required to cause a progressive award increase is not explicitly stated in accordance with the ability of the embodiments of the present invention to apply to either primary game outcomes and/or secondary game outcomes.

FIG. 2 shows a block diagram 200 detailing another embodiment of the present invention, namely a game having a non-linked progressive award whereby progressive award gains carry over between play sessions. In such an embodiment, a player tracking system maintains the carry over of the progressive award in a player file and/or database. To that extent, block diagram 200 details a player playing one or more games (e.g., machine, device or Internet interface) during a single gaming session where each of the games played during the gaming session are associated with the same identified player.

Initially a player tracking system in communication with FIG. 8: Screen shot of exemplary game with said screen 20 the game identifies the player 210 and determines whether the player is a repeat player or first time player 211. If the player is a repeat player, the progressive award values are set to the previous values after a last gaming session 212. If the player is not a repeat player, the progressive award values are set to their default seed values 230. The game is then initiated 213 and a game outcome generated 214. Based on the game outcome generated at step 214, it is then determined whether a progressive award should be increased 215. If so, the progressive award value is increased 231 and saved in association with the identified player 232. The player then elects to play the game again 215 or end the game 217. In this configuration the progressive award values are personal to the player and are maintained by a player tracking system.

> FIG. 3 shows a block diagram 300 detailing another 35 embodiment of the present invention, namely a game having a progressive award that can only be won in a bonus round, and whether or not the progressive award is won, it is reset after the bonus round concludes. The block diagram 300 also takes into account the initial establishment of the progressive award value. It is based on a standard method of increasing the progressive award as a percentage of every eligible wager.

The game is first activated 310 and it is then determined if the game has been activated previously 311. If not, the progressive award value is set at the initial/default seed value 312. Wagers are then accepted from a subject player 313 and the game is initiated by the player **314**. Based on the wager amount, the progressive award value is increased 315 and the game is played 316 thus generating a game outcome. It is then determined if the game outcome triggers a bonus event 317. If the game outcome does trigger a bonus event, a bonus game is played during which the progressive award(s) may be won **318**. After the bonus game is played, the progressive award values are reset 319. It is then determined whether the player earned any awards 320 and if so, the awards are credited to the player 321. The game ends at step 322.

FIG. 4 shows a block diagram 400 similar to block diagram 300. However, it details an innovative method of randomly increasing the progressive award as described in the embodiments of the present invention.

The game is first activated 410 and it is then determined if the game has been activated previously 411. If not, the progressive award value is set at the initial/default seed value **412**. Wagers are then accepted from a subject player **413** and the game is initiated by the player 414 and a game outcome is generated 415. It is then determined if the game outcome triggers a progressive award value increase 416. If yes, the progressive award value is increased 417 and then the pro-

gressive award value is increased based on the wager amount 418. It is then determined whether the game outcome triggers a bonus event 419. The bonus game is then played 420 and after the bonus game is played, the progressive award values are reset 421. It is then determined whether the player earned any awards 422 and if so, the awards are credited to the player 423. The game ends at step 424.

FIG. 5 shows a block diagram 500 detailing an exemplary gaming system and game which combines a number of inventive components in a single game. The player ID is obtained 10 510 and it is determined whether the player has played previously 511. If the player has not played previously, the progressive award values are set to their default seed values 530, else the progressive award values are restored to their values corresponding to their values the last time said player 15 played said game 512. The player initiates the game 513 which generates a game outcome 514. If the game outcome matches required outcome necessary to trigger a progressive award increase 515, the corresponding progressive award value is increased 531 and the updated value is saved 532. 20 Block diagram 500 applies whether the progressive award increase triggering outcome is based on the primary game outcome or based on a secondary game outcome. It is then determined whether the game outcome triggers a bonus outcome 516. If the game outcome triggers a bonus round, the 25 pay line wager which activated the bonus round is examined to determine if it is greater than one unit 517. If the activating pay line wager is greater than one unit, the progressive awards are increased based upon a difference between the activating pay line wager and one unit 518. Then, the bonus event is 30 played during which the player has the chance of winning at least one of the progressive awards 519. When the bonus event concludes, whether or not any progressive award is earned by the player, the progressive awards are reset 520 and stored **521**. The player can then play again **522** or can end his 35 or her play session 523.

FIG. 6 shows a screen shot from an exemplary game featuring some of aspects of the embodiments of the present invention. The screen shot shows three progressive awards, referred to as top progressive 610, middle progressive 620 40 and bottom progressive 630. When the game is played by a player for the first time, the progressive awards are, for example, set to 100 units, 75 units and 50 units, respectively.

FIG. 7 shows a successive screen shot which follows from FIG. 6. A jackpot symbol 640 appears on the third reel, which 45 in one embodiment of the present invention causes the bottom progressive award 630 to increase by a total amount of the wager such that the new value becomes 55 units (i.e., 50 units+5 units=55 units.). FIG. 8 shows another screen shot. A jackpot symbol 650 appears on the first reel, which in one 50 embodiment of the present invention causes the top progressive award 610 to increase by twice a total amount of the wager such that the new value becomes 110 units (i.e., 100 units+2*5 units=110 units).

FIG. 9 shows another screen shot. A jackpot symbol 660 55 appears on the third reel, which in one embodiment of the present invention causes the bottom progressive award 630 to increase by a total amount of the wager. Since in this screen shot, the wager size is 25 units, the new value becomes 80 units (i.e., 55 units+25 units=80 units). FIG. 10 show another 60 screen shot demonstrating that multiple progressive award increase triggering events may occur simultaneously. As shown, two different progressive awards are increased. The jackpot symbol 670 on the 2nd reel causes the middle progressive award 620 to increase while the jackpot symbol 680 65 on the 3rd reel causes the bottom progressive award 630 to increase. A game message area 680 shown in the screen shot

8

indicates that "10 Added to Middle Bonus Jackpot", however, this is a dynamic display area which also displays other messages which, in this example, would also include "10 Added to Bottom Bonus Jackpot".

FIG. 11 shows another screen shot demonstrating that progressive award increase triggers and primary game winning outcomes may occur simultaneously. As shown 32 units 690 are won based on the game outcome defined by the symbols on the reels and the middle progressive award value 620 has been increased.

FIG. 12 shows another screen shot. A primary game has triggered a bonus event with a wager of 5 units on the pay line which activated the bonus. The progressive award values, which were 110 units, 90 units and 90 units, respectively, prior to the start of the bonus round have been boosted. At the start of the bonus round, the progressive award values 610-630 have been boosted to 510 units, 390 units and 290 units, which corresponds to a boost of 400 units, 300 units and 200 units, respectively, which is based on the fact that the activating wager was 5 units. Therefore, each boost was calculated as Activating Pay Line Wager-1 unit)*Seed, or (5-1)*Seed, or specifically, 4'100 units=400 units, 4*75=300 units and 4*50 units=200 units. The screen shot also indicates that the progressive awards can be won within this bonus round as noted by the color coded slices 700 on the bonus wheel labeled "Jackpot".

FIG. 13 shows another screen shot. The screen shot shows the status if the game after the completion of the bonus round with a 5 unit activating pay line wager. The progressive award values are therefore set to values calculated as Activating Pay Line Wager*Seed or 5*Seed, or specifically, 5*100 units=500 units, 5*75 units=375 units and 5*50 units=250 units

Although the invention has been described in detail with reference to several embodiments, additional variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.

The invention is claimed as follows:

- 1. A gaming system comprising:
- a housing;
- a plurality of input devices supported by the housing, said plurality of input devices including:
 - (i) an acceptor, and
 - (ii) a cashout device;
- at least one display device supported by the housing;
- at least one processor; and
- at least one memory device which stores a plurality of instructions, which when executed by the at least one processor, cause the at least one processor to operate with said at least one display device and said plurality of input devices to:
 - (a) if a physical item is received via the acceptor, establish a credit balance based, at least in part, on a monetary value associated with the received physical item,
 - (b) maintain a plurality of progressive awards,
 - (c) display a plurality of reels, wherein each of the plurality of reels are separately associated with a different one of the maintained progressive award values,
 - (d) receive a wager amount placed on a play of a game, wherein said credit balance is decreasable based on said placed wager amount,
 - (e) for the wagered on play of the game:
 - (i) cause each of the plurality of reels to display a randomly determined symbol along a payline, wherein the randomly determined symbols displayed along the payline form a symbol combination, and

9

- (ii) for each of the reels, if the formed symbol combination is a designated symbol combination and if the randomly determined symbol displayed along the payline by said reel is a designated symbol associated with said reel, cause the maintained pro- 5 gressive award associated with said reel to be provided to a player, wherein the credit balance is increasable based on the maintained progressive award associated with said reel which is to be provided to the player, and
- (f) if a cashout input is received via the cashout device, cause an initiation of any payout associated with the credit balance.
- 2. The gaming system of claim 1, wherein when executed game, the plurality of instructions cause the at least one
 - (i) cause each of the plurality of reels to display a randomly determined symbol along another payline, wherein the randomly determined symbols displayed along the other 20 payline form another symbol combination, and
 - (ii) for each of the reels, if the formed other symbol combination is the designated symbol combination and if the randomly determined symbol displayed along the other payline by said reel is the designated symbol associated 25 with said reel, cause the maintained progressive award associated with said reel to be provided to the player.
- 3. The gaming system of claim 1, wherein the plurality of reels includes five reels.
- 4. The gaming system of claim 1, wherein the designated 30 rality of reels includes five reels. symbol combination is one of a plurality of different designated symbol combinations.
- 5. The gaming system of claim 1, wherein when executed by the at least one processor, if the formed symbol combinainstructions cause the at least one processor to:
 - (i) determine any award associated with the formed symbol combination, and
 - (ii) display any determined award associated with the formed symbol combination.
- 6. The gaming system of claim 1, wherein at least one of the wager amount and any of the maintained progressive awards are at least one selected from the group consisting of: a quantity of monetary credits, a quantity of non-monetary credits, and a quantity of player tracking points.
 - 7. A gaming system server comprising:
 - at least one processor; and
 - at least one memory device which stores a plurality of instructions, which when executed by the at least one processor, cause the at least one processor to:
 - (a) if a physical item is received via an acceptor, establish a credit balance based, at least in part, on a monetary value associated with the received physical item,
 - (b) maintain a plurality of progressive awards,
 - (c) cause at least one display device to display a plurality 55 of reels, wherein each of the plurality of reels are separately associated with a different one of the maintained progressive awards,
 - (d) receive data associated with a placement of a wager amount on a play of a game, said wager amount being 60 deducted from the credit balance, (e) for the wagered on play of the game:
 - (i) cause the at least one display device to cause each of the plurality of reels to display a randomly determined symbol along a payline, wherein the ran- 65 domly determined symbols displayed along the payline form a symbol combination, and

10

- (ii) for each of the reels, if the formed symbol combination is a designated symbol combination and if the randomly determined symbol displayed along the payline by said reel is a designated symbol associated with said reel, cause the maintained progressive award associated with said reel to be provided to a player, wherein said credit balance is increasable based on the maintained progressive award associated with said reel which is to be provided to the player, and
- (f) if a cashout input is received via a cashout device, cause an initiation of any payout associated with the credit balance.
- 8. The gaming system server of claim 7, wherein when by the at least one processor for the wagered on play of the 15 executed by the at least one processor for the wagered on play of the game, the plurality of instructions cause the at least one processor to:
 - (i) cause the at least one display device to cause each of the plurality of reels to display a randomly determined symbol along another payline, wherein the randomly determined symbols displayed along the other payline form another symbol combination, and
 - (ii) for each of the reels, if the formed other symbol combination is the designated symbol combination and if the randomly determined symbol displayed along the other payline by said reel is the designated symbol associated with said reel, cause the maintained progressive award associated with said reel to be provided to the player.
 - 9. The gaming system server of claim 7, wherein the plu-
 - 10. The gaming system server of claim 7, wherein the designated symbol combination is one of a plurality of different designated symbol combinations.
- 11. The gaming system server of claim 7, wherein when tion is not the designated symbol combination, the plurality of 35 executed by the at least one processor, if the formed symbol combination is not the designated symbol combination, the plurality of instructions cause the at least one processor to:
 - (i) determine any award associated with the formed symbol combination, and
 - (ii) cause the at least one display device to display any determined award associated with the formed symbol combination.
 - 12. The gaming system server of claim 7, wherein at least one of the wager amount and any of the maintained progres-45 sive awards are at least one selected from the group consisting of: a quantity of monetary credits, a quantity of non-monetary credits, and a quantity of player tracking points.
 - 13. The gaming system server of claim 7, which transmits and receives data over a data network.
 - 14. The gaming system server of claim 13, wherein the data network is an internet.
 - 15. A method of operating a gaming system, said method
 - (a) if a physical item is received via an acceptor, establish a credit balance based, at least in part, on a monetary value associated with the received physical item,
 - (b) causing at least one processor to maintain a plurality of progressive awards,
 - (c) causing at least one display device to display a plurality of reels, wherein each of the plurality of reels are separately associated with a different one of the maintained progressive awards,
 - (d) receiving a wager amount placed on a play of a game, said wager amount being deducted from the credit balance, (e) for the wagered on play of the game:
 - (i) causing the at least one display device to cause each of the plurality of reels to display a randomly deter-

- mined symbol along a payline, wherein the randomly determined symbols displayed along the payline form a symbol combination, and
- (ii) for each of the reels, if the formed symbol combination is a designated symbol combination and if the 5 randomly determined symbol displayed along the payline by said reel is a designated symbol associated with said reel, causing the maintained progressive award associated with said reel to be provided to a player, wherein said credit balance is increasable 10 based on said maintained progressive award associated with said reel which is to be provided to the player, and
- (f) if a cashout input is received via a cashout device, cause an initiation of any payout associated with the credit 15 balance.
- **16**. The method of claim **15**, which includes, for the wagered on play of the game:
 - (i) causing the at least one display device to cause each of the plurality of reels to display a randomly determined 20 symbol along another payline, wherein the randomly determined symbols displayed along the other payline form another symbol combination, and
 - (ii) for each of the reels, if the formed other symbol combination is the designated symbol combination and if the 25 randomly determined symbol displayed along the other payline by said reel is the designated symbol associated

12

with said reel, causing the maintained progressive award associated with said reel to be provided to the player.

- 17. The method of claim 15, wherein the plurality of reels includes five reels.
- **18**. The method of claim **15**, wherein the designated symbol combination is one of a plurality of different designated symbol combinations.
- 19. The method of claim 15, which includes, if the formed symbol combination is not the designated symbol combination:
 - (i) causing the at least one processor to determine any award associated with the formed symbol combination, and
 - (ii) causing the at least one display device to display any determined award associated with the formed symbol combination.
- 20. The method of claim 15, wherein at least one of the wager amount and any of the maintained progressive awards are at least one selected from the group consisting of: a quantity of monetary credits, a quantity of non-monetary credits, and a quantity of player tracking points.
- 21. The method of claim 15, which is executed through a data network.
- 22. The method of claim 21, wherein the data network is an internet

* * * * *